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A membrane is non-homogeneous if it has density or thickness variations. Literature on
the vibrations of non-homogeneous membranes are few. A composite membrane
composed of joining many homogeneous strips was considered by Sato [1] and Kalotas
and Lee [2], while membranes composed of two distinct pieces were studied by several
authors [3–6]. Recently, Masad [7] investigated a continuously non-homogeneous
rectangular membrane where the density function varies linearly with respect to an edge.
Masad used numerical integration and a perturbation method to solve for the natural
frequencies.

The purpose of this note is to show that the linear density variation case studied by
Masad [6] has a closed form exact solution. Also, we shall present another exact solution
for the vibration of a continuously non-homogeneous annular membrane. These exact
solutions are important not only in their own right as specific vibration problems, but can
also serve as error standards for approximate methods, whether analytic or numerical.

The equation of motion is

92w+ k2r(x)w=0, (1)

where w is the displacement, all lengths are normalized by dimension L, r(x) is a density
function with a mean of unity, and k is the constant normalized frequency

k=(frequency)L[(mean density per area)/(tension per length)]1/2. (2)

The boundary condition is that w=0 on the perimeter of domain s. Then r(x) satisfies

1
s g g r(x) ds=1. (3)

Note that the total mass is fixed for whatever density variation. Thus it is more relevant
when compared with the homogeneous membrane where r(x)=1.

Consider the rectangular membrane with normalized dimensions 0E xE 1, 0E yE l.
The linear density function that satisfies equation (3) is

r(x)=1+ b(x−0·5)q 0. (4)

Here, 0E bQ 2 is a parameter describing the inhomogeneity. Let

w(x, y)= sin (ay)f(x), (5)

where a= np/l. Substitution into equation (1) gives the Stokes equation

fzz + zf=0, (6)
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where

z0$k201−
b
21− a2 + bk2x%(bk2)−2/3. (7)

The general solution to equation (6) is in terms of Bessel functions,

f= c1 z1/2J−1/3 (2
3 z3/2)+ c2 z1/2J1/3 (2

3 z3/2). (8)

The condition for non-trivial solutions satisfying f(0)= f(1)=0 is

(z0 z1)1/2[J−1/3 (2
3 z3/2

0 )J1/3 (2
3 z3/2

1 )− J−1/3 (2
3 z3/2

1 )J1/3 (2
3 z3/2

0 )]=0, (9)

where z0 = z \x=0 and z1 = z =x=1. For a given a, b, the eigenvalue k is obtained from equation
(9) by simple root search. Since linear density (or tapered thickness) has some importance,
we tabulated the gravest frequency in Table 1. For given l, the frequency for b=0 is that
of the homogeneous membrane, i.e. (1+ l−2)1/2, while the frequency for other b values are
for non-homogeneous membranes of the same total mass.

For Table 1, we conclude the following: (1) For a given aspect ratio (or area) the gravest
frequency first decreases with taper b, then increases with b: the minimum is slightly below
the homogeneous frequency. (2) As b is varied, there exist plateaus of very small frequency
changes (perhaps a frequency lock): the frequency may jump to a higher plateau for larger
b, and these jumps occur more often at low aspect ratio l. These interesting phenomena
should be investigated experimentally.

Another exact solution exists for a non-homogeneous annular membrane when the
density is proportional to the inverse square of the radius. Let the annulus be described
by aLE rEL. Let

r=
c
r2, c=

1− a2

−2 ln a
q 0, a$ 0, (10)

T 1

The gravest frequency for a rectangular membrane with linear density: vertical lines indicate
some plateau separations

b
ZXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXV

l 0·0 0·25 0·5 0·75 1·0 1·25 1·5 1·75 1·99

0·2 16·0190 16·954 18·451 20·381 24·981 27·745 33·498 45·776 223·52
0·4 8·4590 8·438 = 10·093 12·366 15·017 17·918 21·018 24·301 113·28
0·6 6·1062 6·098 6·075 = 8·222 8·248 = 10·963 11·032 = 17·158 76·538
0·8 5·0290 5·024 5·011 4·991 = 7·465 7·489 = 10·430 13·594 56·505
1·0 4·4429 4·439 4·430 4·416 = 7·074 7·096 7·118 = 10·205 46·777
1·2 4·0894 4·087 4·080 4·068 4·053 = 6·873 6·895 = 10·042 39·793
1·4 3·8607 3·858 3·852 3·843 3·830 3·813 = 6·757 6·778 = 32·120
1·6 3·7047 3·702 3·697 3·689 3·677 3·663 = 6·666 6·687 = 29·777
1·8 3·5939 3·592 3·587 3·579 3·569 3·555 3·539 = 6·623 26·438
2·0 3·5124 3·510 3·506 3·499 3·489 3·476 3·461 = 6·578 23·103
5·0 3·2038 3·202 3·199 3·193 3·186 3·176 3·165 3·151 = 9·746

10·0 3·1573 3·156 3·152 3·147 3·140 3·131 3·120 3·107 = 6·406
50·0 3·1422 3·141 3·137 3·132 3·125 3·116 3·105 3·093 3·079
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T 2

The gravest frequency for an annular membrane with inverse square density

a k(non-homo) k(homo) a k(non-homo) k(homo)

0 0 2·4048 0·4 5·064 5·183
0·0001 1·464 2·587 0·5 6·162 6·246
0·001 1·690 2·654 0·6 7·770 7·828
0·01 2·071 2·801 0·7 10·417 10·455
0·1 2·943 3·314 0·8 15·676 15·698
0·2 3·574 3·816 0·9 31·401 31·412
0·3 4·245 4·412 0·99 314·16 314·16

where the value of c is from the constant mass condition (3). The governing equation is

wrr +
1
r

wr +
1
r2 wuu +

k2c
r2 w=0. (11)

Equation (11) yields the solution

w=cos (nu) sin [zk2c− n2 ln r], n=0, 1, 2, . . . . (12)

For non-trival solutions the boundary conditions give

zk2c− n2 ln a=mp, m=1, 2, 3, . . . , (13)

or

k=X1
c$0mp

ln a1
2

+ n2% . (14)

The gravest frequency is when n=0 and m=1, where

k= pX 2
(1− a2) =ln a =. (15)

In comparison, the gravest frequency for a homogeneous annulus is the lowest eigenvalue
of the Bessel function equation:

J0 (k)Y0 (ka)− J0 (ka)Y0 (k)=0. (16)

The results are shown in Table 2. We conclude for the inverse square density distribution
that the gravest frequency for the non-homogeneous annulus membrane is lower than that
of the homogeneous membrane, especially when the inner radius a is small. In fact k:0
as a:0 for the non-homogeneous case while k:first zero of J0 for the homogeneous case.
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